Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Nat Commun ; 14(1): 2610, 2023 05 05.
Article in English | MEDLINE | ID: covidwho-2316557

ABSTRACT

Severe COVID-19 is characterized by an increase in the number and changes in the function of innate immune cells including neutrophils. However, it is not known how the metabolome of immune cells changes in patients with COVID-19. To address these questions, we analyzed the metabolome of neutrophils from patients with severe or mild COVID-19 and healthy controls. We identified widespread dysregulation of neutrophil metabolism with disease progression including in amino acid, redox, and central carbon metabolism. Metabolic changes in neutrophils from patients with severe COVID-19 were consistent with reduced activity of the glycolytic enzyme GAPDH. Inhibition of GAPDH blocked glycolysis and promoted pentose phosphate pathway activity but blunted the neutrophil respiratory burst. Inhibition of GAPDH was sufficient to cause neutrophil extracellular trap (NET) formation which required neutrophil elastase activity. GAPDH inhibition increased neutrophil pH, and blocking this increase prevented cell death and NET formation. These findings indicate that neutrophils in severe COVID-19 have an aberrant metabolism which can contribute to their dysfunction. Our work also shows that NET formation, a pathogenic feature of many inflammatory diseases, is actively suppressed in neutrophils by a cell-intrinsic mechanism controlled by GAPDH.


Subject(s)
COVID-19 , Extracellular Traps , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) , Humans , COVID-19/metabolism , Extracellular Traps/metabolism , Metabolome , Metabolomics , Neutrophils , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism
2.
FEBS J ; 288(12): 3715-3726, 2021 06.
Article in English | MEDLINE | ID: covidwho-923390

ABSTRACT

In response to viral infections, the innate immune system rapidly activates expression of several interferon-stimulated genes (ISGs), whose protein and metabolic products are believed to directly interfere with the viral life cycle. Here, we argue that biochemical reactions performed by two specific protein products of ISGs modulate central carbon metabolism to support a broad-spectrum antiviral response. We demonstrate that the metabolites generated by metalloenzymes nitric oxide synthase and the radical S-adenosylmethionine (SAM) enzyme RSAD2 inhibit the activity of the housekeeping and glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH). We discuss that this inhibition is likely to stimulate a range of metabolic and signalling processes to support a broad-spectrum immune response. Based on these analyses, we propose that inhibiting GAPDH in individuals with deteriorated cellular innate immune response like elderly might help in treating viral diseases such as COVID-19.


Subject(s)
Antiviral Agents/metabolism , Carbon/metabolism , Interferons/metabolism , Proteins/metabolism , S-Adenosylmethionine/metabolism , Antiviral Agents/pharmacology , COVID-19/prevention & control , COVID-19/virology , Cells, Cultured , Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating)/metabolism , HEK293 Cells , Humans , Immunity, Innate/drug effects , Induced Pluripotent Stem Cells/metabolism , Macrophages/metabolism , Models, Biological , Oxidoreductases Acting on CH-CH Group Donors , Proteins/genetics , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL